electronic band structure of a carbon nanotube superlattice

نویسندگان

a. a. shokri

department of physics, payame noor university (pnu), 19395-3697, tehran, iran. z. karimi

department of physics, islamic azad university north tehran branch, tehran, iran.

چکیده

by employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (cnt) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. the calculations are based on the tight binding model in the nearest-neighbor approximation. we seek to describe electronic band structure in the presence of the pentagon-heptagon pairs. our calculation  show  that the pentagon–heptagon  pairs  defect  in  the  nanotube  structures is not only responsible  for  a  change  in  a  nanotube  diameter,  but  also governs  the  electronic  behaviour  around  fermi  level.  also, we obtain the fermi energy of the system via integration of the density of states and matching it to the number of electron in the unit cell. the numerical results may be useful to design of electronic devices based on cnts.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic band structure of a Carbon nanotube superlattice

By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...

متن کامل

Electronic band structure of a Carbon nanotube superlattice

By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...

متن کامل

Electronic structure of carbon nanotube ropes

We present a tight-binding theory to analyze the motion of electrons between carbon nanotubes bundled into a carbon nanotube rope. The theory is developed starting from a description of propagating Bloch waves on ideal tubes, and the effects of intertube motion are treated perturbatively on this basis. Expressions for the interwall tunneling amplitudes between states on neighboring tubes are de...

متن کامل

Electronic band structure of carbon nanotube superlattices from first-principles calculations

A. Ayuela,1 L. Chico,2 and W. Jaskólski3 1Donostia International Physics Center (DIPC) and Unidad de Física de Materiales, Centro Mixto CSIC-UPV/EHU, 20080 Donostia, Spain 2Departamento de Física Aplicada, Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, 45071 Toledo, Spain 3Instytut Fizyki UMK, Grudziądzka 5, 87-100 Toruń, Poland Received 4 August 2007; revised manus...

متن کامل

Electronic structure control of single-walled carbon nanotube functionalization.

Diazonium reagents functionalize single-walled carbon nanotubes suspended in aqueous solution with high selectivity and enable manipulation according to electronic structure. For example, metallic species are shown to react to the near exclusion of semiconducting nanotubes under controlled conditions. Selectivity is dictated by the availability of electrons near the Fermi level to stabilize a c...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of nano dimension

جلد ۵، شماره ۱، صفحات ۶۳-۶۷

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023